Scandium is a chemical element with symbol Sc and atomic number 21. A silvery-white metallic d-block element, it was discovered in 1879 by spectral analysis of the minerals euxenite and
Sc is the 36th most abundant element in the crust

Earth’s crust abundance of 22 mg/kg, the occurrence of scandium is comparable with that of lead (14 mg/kg) and cobalt (25 mg/kg)

However, scandium is rarely concentrated in nature and remains widely dispersed in the lithosphere as it lacks affinity to combine with the common ore-forming anions

Sc is ‘more rare’ than all other REEs

WHERE IS SC FOUND?

VIABLE SOURCES OF SC TODAY

TiO2 PIGMENT PRODUCT
ACID WASTES STREAMS

URANIUM PROCESSING WASTES
(SOVIET STOCKPILES)

NICKEL-COBALT LATERITES
(AUSTRALIA/TURKEY/USA)

BAUXITE RESIDUES
(RUSAL, AOG)
Bauxides and nickel laterite ores are proposed as the most promising Sc resources for future large scale production; Parnassos/Greece could well be a worldwide resource for Sc!

GLOBAL PRODUCERS

SC IS PRODUCED IN A HANDFUL OF PLACES GLOBALLY

- A major source for scandium deposits was the now flooded Ashurst mine in Zhovti Vody outside Kiev, Ukraine, that was once a major harvesting ground for iron ore and uranium for the Soviet military.
- Today there is an active mine for Sc is in Kazakhstam
- Other Sc sources include REE byproducts
The current Sc world production is estimated at 10 – 12 tpy of scandium oxide.

The economy of Sc:

<table>
<thead>
<tr>
<th>Supply</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-12 tpy</td>
<td>12-14 tpy</td>
</tr>
</tbody>
</table>

Al – Sc 2%: $100-150/kg
Sc has superpowers
Sc achieves superior results than Y in material applications

**Sc Value Chain:**
- Sc2O3 99%: 0.9 $/g
- Sc2O3 99.99%: 5 $/g
- ScF3 99.99%: 253 $/g
- Sc metal: 206 $/g

*Data from 2013*

**Solid Oxide Fuel Cells**
Sc-stabilised Zirconia has lowered operational temperatures facilitating the commercialisation of the technology
+ See example

**Lasers with Sc Garnets**
Have 3 times higher efficiency than
Y garnets
+ SEE EXAMPLE

SCANDIUM-ALUMINIUM ALLOYS

AL20LI20MG10SC20TI30

- as strong as titanium
- as light as aluminium
- as hard as ceramic

SC GOES WELL WITH AL

NATURAL LIGHT
Sc compound is used as phosphors for high intensity “natural” light – close to solar optical spectrum
Sc drastically improves Al alloys, increasing strength, corrosion resistance & allowing welding...

Sc Al alloys origin
Scandium – Aluminium alloys were first used in the 1980s for structural purposes in Soviet aircrafts and missiles.

Weldable alloys
The strength that Scandium alloys brought to weldable alloys, allowed Soviet to built aircrafts (MIG-29) and utilize welded structures. This gave these planes tremendous weight, maneuverability and range advantages.

Strength
Sc offers the
highest increment of strengthening per atomic percent of any alloying element when added to Al

Hot cracking
Sc reduces hot cracking during welding of Al-alloys

SC APPLICATIONS

<table>
<thead>
<tr>
<th>Compound</th>
<th>Application</th>
<th>Today</th>
<th>Future</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sc2O3</td>
<td>SOFC – SSZ solid electrolyte</td>
<td>in market by Bloomenergy</td>
<td>Household use</td>
</tr>
<tr>
<td>Sc2O3</td>
<td>Er: YSGG garnets (Er:Y3Sc2Ga3O12) for optics in lazer application</td>
<td>Er: YSGG has 3 times higher efficiency than Nd,Er: YAG in solid-state lasers radiating in</td>
<td></td>
</tr>
<tr>
<td>Material</td>
<td>Description</td>
<td>Application</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------------------------------------------------------------</td>
<td>---------------------------</td>
<td></td>
</tr>
<tr>
<td>Sc-Al alloy</td>
<td>High resistance Al alloy used in welding or casting – best Al alloy available</td>
<td>Aerospace, Automotive</td>
<td></td>
</tr>
<tr>
<td>Al-Mg-Sc</td>
<td>3D Printing – licensed by Airbus to Apworks</td>
<td>Aerospace, Automotive</td>
<td></td>
</tr>
<tr>
<td>ScF3</td>
<td>Material with negative thermal expansion coefficient</td>
<td>Advanced material composites</td>
<td></td>
</tr>
<tr>
<td>20% Sc - 80% Ti Carbide</td>
<td>doubling of the hardness TiC, to about 50 GPa, second only to diamonds in hardness.</td>
<td>Advanced materials</td>
<td></td>
</tr>
<tr>
<td>Phosphorous / Lighting</td>
<td>Scandium has a broad emission spectrum that generates a ‘daylight’ effect. Sc2O3 and ScVO4</td>
<td>Stadium / studio lighting Household lighting</td>
<td></td>
</tr>
</tbody>
</table>
WHAT IS SCANDIUM?

Scandium is a chemical element with symbol Sc and atomic number 21. A silvery-white metallic d-block element, it was discovered in 1879 by spectral analysis of the minerals euxenite and gadolinite from Scandinavia.

Scandium is a rare-earth metal, used in small amounts but with drastic effects on properties of matter. It is a key component in producing high strength Aluminium alloys used in aerospace and 3D printing as well as in Solid Oxide Fuel Cell (SOFC) applications.

LEARN MORE

SCANDIUM SUPPLY

Scandium is present in most of the deposits of rare-earth and uranium compounds, but it is extracted from these ores in only a few mines worldwide. Scandium supply is limited due its scarcity and the high cost of its production, which currently takes place in Asia and Russia. Europe has no production of Scandium, but is home to many Scandium end-users and to industries having Scandium in their industrial residues. By converting waste into resources and thus developing a stable and secure EU scandium supply chain to serve the needs of EU aerospace and high tech industry, SCALE project will contribute to reduce dependency on imports of raw materials.

SCALE PROJECT

Scandium is an enabler in vital sectors like clean energy, transport, optics and advanced materials. Despite having a proven set of impressive applications, its volatile price and unreliable supply chain limit their deployment. SCALE develops innovative technologies that can extract economically and sustainably Sc from dilute mediums (<100 mg/L) and upgrade them to pure oxides, metals and alloys at lower energy or material cost. This will be achieved through the development of a number of innovative extraction, separation, refining and alloying technologies that will be validated in an appropriate laboratory and industrial environment to prove their technical and economic feasibility. SCALE builds on the success of previous and on-going European research projects like ENEXAL, EURARE,